Reed canary grass on peat soils in northern Sweden

carbon dioxide emission measurements on restored agricultural land

Cecilia Palmborg

Department of Agricultural Research for Northern Sweden

Swedish University of Agricultural Sciences

Cecilia Wahlberg-Roslund

Rural Business Development Ltd, Malå, Sweden

Reed canary grass- the plant

A tall grass- 2.5 m
Perennial 10-15 years
Rhizomes
Deep root distribution
Natural habitats
Nutrient rich shores
Ditches, field margins
Abandoned fields

Delayed harvest -spring harvest

Photographer: Håkan Örberg

Cut in autumn
Dry and harvest in spring

- + the crop is dry
- + less ash
- + less N, K, Cl, P
- -winter decomposition
- harvest losses

Agriculture on peatland in Sweden

- 1800s
 - Harvest of sedges
- 1900s
 - Ditching
 - Sowing of fodder grasses
- 1946
 - Cultivated peat and gyttja in Sweden 705000 ha
- 1996
 - 300000 ha of this still cultivated

Abandoned non-forested agricultural land

Data: Swedish National Forest Inventory

Reed canary grass on peatland

1900s Fodder crop 1990s

 Energy crops promoted to use surplus agricultural land – Conversion 90

Today

- 1000 ha in Sweden
- 20 000 ha Finland
- Concern about risk of increased carbon emissions

Utilisation of RCG

Present use

- Bales or bulk RCG as fuel
- Briquetting to fuel
- Bedding for livestock
- Fibre additive for livestock

Future use

- Biogas
- Ethanol

The restoration project Fårträsk in Malå

Drainage and sedimentation pool

Removal of Sedges and bushes

Soil preparation

preparing miller crushing of roots and slash

Established Reed canary grass

Measuring CO₂ emission

CO₂ emission from abandoned and reed canary grass field

Will come in a special issue on greenhouse gases in agriculture in Acta Agricultura Scandinavica Section A Animal Science

Experiment with groundwater

regulation

Drain trap

Effect of surrounding vegetation

bare plots cut 2010 Vegetated plots

Layout of measurements in regulation plots

Results

Carbon dioxide emissions

ZSeplens Plen Dates Dates

Groundwater level

- Drain trap plots 66-86 cm and free-draining plots 80-93 cm below the soil surface
- Only significant elevation in drain trap plots in June 2011

CO₂ emissions

- No significant effect of drain traps
- Higher emissions on vegetated plots 2011

Plant biomass

No significant effect

Conclusions

- In the establishment year there was no enhanced CO₂ emission from RCG, rather the opposite
- The soil was more compact and had higher groundwater level and water content on the RCG-field
- Drain traps to increase the groundwater level during the growing season had no effects on RCG growth and CO₂ emissions

Thank you for listening

